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ABSTRACT 

Empirical evidence shows that a financial distress, faced by a bank or the whole economy, might 
cause large-scale withdrawals of deposits even when bank deposits are protected by deposit 
insurance, implicitly or explicitly guaranteed by a government. Building on Kiema – Jokivuolle 
(2015), we present a new model of such partial bank runs. In our model withdrawals are caused by 
the fear that both the bank and the government’s deposit guarantee might fail in the future. Our focus 
is on a guarantee rather than on insurance, since the assets of deposit insurance funds might not be 
sufficient in large-scale systemic crises. Guarantee failure is possible because, being sovereign, the 
government may choose not to keep its promises. This option causes a fixed welfare cost (e.g., a 
reputational cost), which in a sufficiently severe crisis may be smaller than the costs from deposit 
guarantee payments. We also assume that, being welfare-maximizing, the government recapitalizes 
the bank during the early stage of the bank run. When decisions concerning deposit guarantee 
payments are made, recapitalization costs are already sunk costs, but the partial bank run has reduced 
the coverage costs that the remaining deposits might cause for the government. In this way, the 
depositors who withdraw during a partial bank run decrease the danger of a deposit guarantee failure 
and increase the incentives of the remaining depositors to keep their deposits in the bank. We apply 
our framework to the European Deposit Insurance Scheme (EDIS), and we view the reliability of the 
Single Resolution Fund and its backstop as the counterpart of the reliability of the government’s 
promises. It turns out that in an asymmetric shock that affects only a single eurozone country EDIS 
improves bank stability, but its effects might be ambiguous in a systemic crisis which affects the 
whole Banking Union. 
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1. Introduction 

 

Empirical evidence suggests that even if bank deposits are protected by a deposit insurance, 
implicitly or explicitly guaranteed by a government, a distress that the bank or the government faces 
might induce depositors to bank run-like large-scale withdrawals of deposits. An example of such 
behavior was seen in Greece during the period from 2009 to June 2012 as the aggregate amount of 
Greek bank deposits decreased from €245bn to less than €174bn (Siegel, 2014). It is estimated that 
only one third of the funds had been withdrawn because of decreasing living standards, and that two 
thirds either left the country or were stored within Greece outside the Greek banking system (ibid).1  

The Greek "bank jog", i.e., the withdrawing of deposits only gradually, and only a part of them, 
would not have made much sense if depositors had during the years 2009-2012 had either no trust at 
all, or a perfect trust in the deposit guarantee. This is because in the former case it would have been 
rational to withdraw all deposits immediately, whereas in the latter case there would have been no 
reason for withdrawing any deposits. These two polar cases are described by the classical bank run 
model of Diamond and Dybvig (1983), which is a model with three periods (the period T=0 at which 
the bank makes an investment; the period T=1 at which a bank run might emerge; and the period T=2, 
at which the return from the investment becomes available). The model has two equilibria: in the 
bank run equilibrium it is rational for all depositors to withdraw their deposits from the bank at T=1, 
because all the other depositors do so, while in the other equilibrium (the one without a bank run) 
there is a sufficient number of depositors (the patient depositors) for whom it is optimal to withdraw 
their deposits only at T=2.  

A famous criticism by Goldstein and Pauzner (2005, p. 1294) points to a certain incoherence in the 
Diamond – Dybvig model: despite of the existence of the bank run equilibrium, in the Diamond – 
Dybvig model the mutual bank solves the problem of selecting the optimal deposit contract assuming 

that a bank run will not occur. However, the model does not as such answer the question which 
equilibrium will be realized (or even yield probabilities for the two equilibria). 

Goldstein and Pauzner (2005) introduce a global games framework, in which each depositor 
receives at T=1 an inaccurate signal and uses it for deducing a probability distribution for the correct 
signal and further, for the revenue from the bank’s investment at T=2.2 The equilibrium of this setting 
turns out to be unique. A unique equilibrium has been proved to emerge also when the depositors 

                                                           
1 Cf also Brown et al. (2016), who have studied bank run-like withdrawals of deposits in Switzerland during the crisis 
years 2008-2009. They compare the distress which various Swiss banks were facing with the tendency of the depositors 
of each bank to withdraw their deposits. According to ibid. (pp. 2-3), bank accounts in a highly distressed bank (UBS) 
were 23 percentage points more prone to experience an outflow of funds than accounts in a non-distressed bank. Cf. 
discussion below. 
2 Cf also e.g. Takeda (2001), who applies a global games model to international capital flows, Moreno and Takalo (2012) 
who interpret the dispersion in the signals of the global games framework as a measure of bank transparency, and Silva 
(2008), who analyzes the effects of the design of partial deposit guarantee schemes on bank run probabilities utilizing a 
global games framework. 
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coordinate their behavior in an exogenously given manner,3 and when the demand deposit contracts 
are suitably modified.4 

 The subsequent literature has also identified a variety of explanations for the partial nature of many 
observed bank runs. For example, Azrieli and Peck (2012) show that a bank run might remain partial 
when there is more variety in consumer preferences than Diamond and Dybvig (1983) postulated. 
Ennis and Keister (2010) consider a setup in which depositors withdraw their deposits sequentially 
and the government can respond to an emerging bank run by changing its policies in order to stop the 
run.  

However, most of the literature has so far focused on bank runs which occur in the absence of a 
deposit guarantee, or when the deposit guarantee is only partial (cf. Silva, 2008), i.e. guarantees a 
sum which is smaller than the principal of the deposits. Real-world deposit insurance and government 
deposit guarantees normally cover the whole deposit, implying that if the depositors had perfect trust 
in the deposit guarantee, both the behavior of the other depositors and negative economic signals 
should be irrelevant for the withdrawal decisions of each depositor. If this were the case, bank runs 
should never occur in the presence of a deposit guarantee.  

However, the bank runs in Greece in 2009-2012 suggest that not just a bank run, but also the trust 

in a deposit insurance or guarantee can be partial. Traditional models of bank runs are not well suited 
for analyzing partiality of trust, although analyzing trust in this context has become increasingly 
important, also with an eye to the plan to establish a common deposit insurance scheme in the 
European Union.  

The roadmap that the European Commission presented on December 6, 2017 for deepening 
Europe’s Economic and Monetary Union suggests that the European Deposit Insurance Scheme 
(EDIS) should be implemented already by mid-2019 (European Commission, 2017a, p. 15). Since it 
is unlikely that the assets of a deposit insurance fund (whether national or union-wide) suffice for 
reimbursing all insured depositors in a severe, large-scale bank crisis, the availability of other sources 
of funding is quite essential for the credibility of a deposit insurance. In the case of EDIS, such extra 
funding would be provided by the Single Resolution Fund and its backstop which, according to the 
proposal of the European Commission (2017b, p. 6), will be provided by the future European 
Monetary Fund. As the Commission points out, the backstop “will instil[l] confidence in the banking 
system by underpinning the credibility of actions taken by the Single Resolution Board” (ibid.). 

Clearly, a theoretical analysis of the confidence and the credibility that the Commission wishes to 
strengthen would be helpful for discussions of these new tools. Wishing to focus on cases in which 
the assets of insurance funds are insufficient, we shall present a model with a government deposit 
guarantee rather an insurance. In the model the credibility of the deposit guarantee is a matter of 
                                                           

3
 The equilibrium becomes unique when one postulates that the depositors coordinate their behaviour (in accordance with 

some exogenously given rule) on the basis of a sunspot signal (see e.g. in Peck - Shell, 2003). Cf. also Engineer et al. 
(2013, p. 534) and Dermine (2015). Dermine (2015) considers a Diamond-Dybvig style setting and postulates that the 
bank has also capital and not just deposits, and that a bank run emerges only when the bank´s loan losses are (according 
to the information which becomes known in the interim period) excessively large, given the bank´s amount of capital. 
4
 Cf. Allen - Gale (1998). Allen and Gale point out that a unique equilibrium can be found in a Diamond- Dybvig style 

model with a shared signal if the bank’s investment cannot be liquidated and if the bank is allowed to make the contract 
conditional on the return, which in their model becomes known already at T=1,  that the bank obtains at T=2. 
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degree. In our framework, the possibility of a deposit guarantee failure emerges naturally as a result 
of the choices made by a welfare maximizing government, and the model provides a natural 
explanation for the fact that bank runs have been observed to be partial.  

 

 

2. Model 

 

Our setting resembles both the framework of Diamond and Dybvig, and the global games 
framework of Goldstein and Pauzner, in several ways. There are three periods (T=0, T=1, and T=2), 
consumers who aim at maximizing their expected utility, a single bank which accepts consumer 
deposits, and a government. There is a riskless liquid asset, which may be used for consumption at 
any time, and which we picture as cash money for the sake of concreteness. The consumers deposit 
their liquid assets in the bank at T=0, and they may withdraw their deposits at T=1 or T=2. 

Just like in the global games framework, there is a signal η  which is observed at T=1, and which 

provides the actors with information about the state of the economy at T=2. It is quite essential in a 
global games model that that the possible signals form a continuum, since in it the signal of each 
depositor is an inaccurate estimate of a more accurate (but unknown) average signal. However, we 
do not need to postulate an infinite number of different signals. To keep things as simple as possible, 
we shall below assume that that there are just two possible signals Gη =  and Bη =  (G for “Good” 

and B for “Bad”). Intuitively, the good signal G corresponds to a normal state of affairs, in which 
depositors believe that bank deposits may be withdrawn at will, whereas after the bad signal  B they 
might lose their trust both in their bank and in government institutions. 

In our model the bank is owned by banker who aims at maximizing his profit.5 The government 
aims at maximizing expected welfare. It makes a promise of a deposit guarantee but, being sovereign, 
it can choose whether it respects its promise or not. As Figure 1 illustrates, in the presence of three 
types of actors there are many more choices to be made than in a model in which only the depositors 
are free to choose between different courses of action. A general analysis of a sequential game which 
contains all the steps shown in Figure 1 would be quite complicated, but fortunately, it is unnecessary 
for our current purposes.  

The point of our analysis is to study the case in which Bη = , i.e. the case in which the bad signal 

is observed, and our focus will be on the choices that are made after its occurrence. We think of the 
bad signal as an adverse, unexpected event, and our approach will be to first solve the model, 

                                                           

5
 Our reasons for introducing a banker into our model, instead of considering the simpler mutual bank of the Diamond-

Dybvig model and most of the literature building on it will soon become obvious: we wish to consider bank failures at 
the last period, T=2, and such failures could not occur in a Diamond-Dybvig style model in which the mutual bank simply 
divides its wealth between the depositors at T=2. 
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assuming that the signal is always good, i.e. that Gη =  with probability 1. Keeping the choices made 

before the signal unchanged, we then consider the choices that are made after it. 

This procedure has two interpretations. We may think of it as corresponding to a restricted 

rationality assumption which states that the depositors and the bank behave at T=0 just as if the signal 
was known to be good for sure. The emergence of the bad signal is under this interpretation an 
unexpected shock which makes the agents change their strategies.  

The other interpretation is based on the fact that – as we shall shortly see – the equilibrium choices 
at T=0 that we present are corner solutions. Even when the possibility of a bad signal is taken into 
account, they will remain the optimal choice if the bad signal (relative to which they are suboptimal) 
is sufficiently unlikely. Hence, the solution that that we present must correspond to a Nash 
equilibrium of the whole game depicted in Figure 1 also without assuming restricted rationality, if 
the probability of the bad signal Bη =  is sufficiently low.  

 

 

2.1 The timeline 

 

The consumers form a continuum, whose size we normalize to 1 µ+ , and which consists of µ  

impatient consumers and 1 patient consumers. Each consumer is allocated one unit of the riskless, 
liquid asset in the beginning of period T=0.  

Impatient consumers obtain utility only from consumption at T=1, while patient consumers obtain 
utility from consumption both at T=1 and at T=2.  The utility of both patient and impatient consumers 
is represented by the utility function u  which by assumption satisfies the familiar conditions  

(1) ( ) ( ) ( )0 0,  ´ 0,  ´́ 0u u c u c= > <  

and which, by normalization, is also assumed to satisfy the condition6  

(2) ( )´ 0 1u <  

Denoting the consumption in periods T=1 and T=2 by ( )1u c  and ( )2u c , respectively, the utility of 

a patient consumer is given by ( )1 2u c c+  and the utility of an impatient consumer is given by ( )1u c

. The characteristics or being patient and impatient are unobservable to others, and not yet known at 
T=0.  

The banker has profitable investment opportunities which are not available to the consumers 
directly. Motivated by these opportunities, the bank presents the depositors with a demand deposit 

                                                           
6 The motive for introducing the assumption (2) will be made clear in Section 2.4. There it will be seen that the assumption 
(2) restricts the weight that the government gives to consumer utility in its welfare function ((25)  below).  
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contract which allows them to withdraw 1R  at T=1 or postpone withdrawal until T=2. The government 

promotes bank stability with a deposit guarantee which applies to the deposits withdrawn in each 
period. The deposit guarantee is a promise that the government provides the depositors with the 
principal of their deposit (i.e., one unit of liquid assets), should the bank fail to do so. We shall discuss 
the functioning of this guarantee in Sections 2.2. and 2.4 below.  

The consumers may choose between depositing and storing their wealth in the form of liquid assets. 
When the depositors are willing to deposit, the banker may choose any number of depositors between 
zero and the total number of consumers, 1 µ+ . We denote the number of depositors by D. Since the 

qualities of being patient or impatient are not known, the number of the impatient depositors is  

(3) 
1IMP

D D
µ

µ
=

+
 

and the number of patient depositors is  

(4) 
1

1PAT
D D

µ
=

+
 

Having received deposits, the banker uses the sum 0I  (where 00 I D≤ ≤ ) for an investment.  

At the beginning of period T=1 the signal η  (where ,G Bη = ) becomes known, and the consumers 

learn their types (patient or impatient). The banker then specifies the interest factor 2R  that applies 

to the deposits which are withdrawn only at T=2.7 Knowing the signal, their own types and the deposit 
interest factors, the depositors choose whether to withdraw. We refer to the decision not to withdraw 
as staying for short.  

It is obvious that all the impatient depositors always choose to withdraw. We denote the share of 
the staying, and of the withdrawing depositors among all patient depositors by χ  and λ , respectively. 

Clearly,  

(5) 1λ χ+ =  

We could choose either λ  or χ  to be the variable which represents the choice made by the 

depositors. It has turned out that using χ leads to less clumsy notation. While λ  would be a measure 

of the size of the bank run, χ  can be thought of as a measure of the stability of the banking system, 

and we refer to it as bank stability for short. Clearly, the value 0χ =  corresponds to the full-scale 

                                                           

7 Observe that under these assumptions the banker cannot make at T=1 a binding commitment ( )( )1 2,R R η  which would 

specify also the payoff at T=2, 2R , and make it depend on the signal. The exclusion of this possibility is motivated not 

just by realism (i.e., the fact that actual demand deposit contracts do not make interest rates contingent on receiving 
negative economic signals) but also by our interpretation of the signal Bη = . Its real-world counterparts are not e.g. 

well-defined economic indicator values that one could make contracts contingent upon, but various kinds of negative 
developments which cannot be characterized precisely in advance. 
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bank run of most bank run models, while the maximum value 1χ =  corresponds to a no-bank-run 

equilibrium, in which all patient depositors stay.    

If the withdrawal at T=1 exceeds the liquid assets of the bank, the bank can get funding through 
government recapitalization. By recapitalization we mean a procedure in which the government 
provides the bank with the extra liquid assets that it needs for the withdrawn deposits and in exchange 

receives the ownership of some share 
G

s  of the bank. This ownership gives the government the right 

to receive a part of the payoff of the bank at T=2. 

If government recapitalization was the only source of funding for the banker in case of liquidity 

shortage, our model would not yield a well-defined equilibrium value for 
G

s . However, we postulate 

that the banker has also the possibility to disinvest. More specifically, if the banker makes at T=0 the 

investment 0I  and liquidates the part I∆  ( 00 I I≤ ∆ ≤ ) of it at T=1, the liquidation immediately 

produces ( )Iγ ∆ , where 1γ < . Disinvestment reduces welfare, and the government prefers 

recapitalizing the bank to letting the banker disinvest. The outside option of disinvestment affects the 

equilibrium of the model via the value of 
G

s , which is determined by the condition that the banker 

would choose to disinvest if recapitalization reduced his profits more than disinvesting. This is 
discussed in more detail in Section 2.2.  

If the investment which remains at T=2 is I , it produces Iρ  where ρ  is a random variable. The 

probability distribution of ρ  is influenced by the signal η .  We assume that after each signal η  (

Gη =  or Bη = ) the distribution of ρ  is characterized by the density function ( )hη ρ . It turns out in 

order to make our model yield interesting comparative static results, it is practical to assume that 

( )Bh ρ  is positive in the whole interval [ ]0,1 , i.e. that after the “bad” signal arbitrarily small returns 

for the investment occur with a positive probability. On the other hand, as we already explained, the 
“good” signal corresponds to a case in which the depositors do not fear to lose their deposits. Below 
it will turn out that this will be the case when  

(6) ( ) 0Gh ρ =  when 1ρ ε< +  for some positive ε  

i.e. when the investment I produces after the “good” signal at least the slightly more than the value 
of the invested liquid assets.8   

At T=2 the assets of the bank consist of the return Iγ  from the remaining investment and the liquid 

assets, if any,9 that remain after the investment of T=0 and the withdrawals of T=1, and its liabilities 

consists of χ  deposits of value 2R . If the assets suffice for the withdrawals, the depositors receive 

their deposits and the bank’s owners (the banker, the government, or both) get the difference of its 
assets and liabilities. When the assets of insufficient, the bank fails. In this case the bank is taken over 

                                                           

8 Our analysis would, as a matter fact, be valid under the simpler assumption which states that ( ) 0Gh ρ =  when 1ρ <

, but if we did not introduce the slightly stronger version (6), the discussion in Section 2.3 would become quite clumsy. 
9  We shall shortly see that at T=2 there are, as a matter of fact, no such remaining liquid assets in the equilibria of the 
model. 
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by the government. As we have seen, the government has given a deposit guarantee, which obliges 
the government to provide each of the staying depositors with the principal (i.e., 1) of their deposits. 
As the last move of the game (which occurs only in case of bank failure), the government chooses 
whether to honor its promise. We postpone the more detailed discussion of bank failure, and the 
welfare function that the government maximizes while making its choice, to Section 2.4 below.  

 

 

2.2. Recapitalization and the bank’s final payoff 

 

We now return to the discussion of period T=1. As we have seen, all the 
IMP

D  impatient depositors 

will withdraw at T=1, and in our notation the number of withdrawing and staying patient depositors 

are denoted by 
PAT

Dλ  and by 
PAT

Dχ , respectively. Remembering (3), (4), and (5), we see that the 

withdrawals amount up to 

(7)  ( )1 1 1

1
1

1 1 1IMP PAT
R D D R D R D

µ χ
λ λ

µ µ µ

   
+ = + = −   + + +   

  

We denote the difference of the liquid assets of the bank (in the absence of a disinvestment) and the 
withdrawals by L, so that  

(8)  0 11
1

L D I DR
χ

µ

 
= − − − 

+ 
 

Simple algebra shows that the liquid assets of the bank suffice for the withdrawals (i.e. that 0L ≥ ) 
even without any disinvestment if the bank stability χ satisfies χ χ≥ , where 

(9) 0
1

1

1
1

I
R

R D

µ
χ

+  
= + − 

 
 

By definition, the bank’s net worth at T=2 is the difference between its assets and liabilities, and as 
we have seen, the bank fails when this difference is negative. The bank’s final payoff is equal with 
the net worth when the bank does not fail, and zero when it does.  We denote the bank’s final payoff 

by 
BANK

π  and the banker’s profit by 
BANKER

π . These are identical when the bank’s liquid assets suffice 

for the withdrawals at T=1, and we may now conclude that they are in this case given by 

(10) 

( ) ( ) ( )

0 2

0 1 2 1

max ,0
1

max 1 1 ,0
1

BANK BANKER

D
L I R

D
I R D R R

χ
π π ρ

µ

χ
ρ

µ

 
= = + − 

+ 

 
= − − − − − 

+ 

  ( )χ χ≥  
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When χ χ< , the liquid assets of the bank are insufficient for the withdrawals. In this case there 

are two strategies to be considered, disinvestment and recapitalization. In a disinvestment a part I∆

of the bank’s investment changed into ( )Iγ ∆  (where 1γ < ) in liquid assets. We assume that the 

government prefers recapitalization to disinvestment independently of which one of the signals 
,B Gη =  is realized, and independently of the size of the bank run. We also assume that, in case of 

recapitalization, the government prefers larger values of its share 
G

s  as an owner of the bank to 

smaller ones.   

The latter assumption means, simply, that the government prefers obtaining the bank’s payoff to 
giving it to the banker. Also the intuition behind the former assumption is easy to see. Disinvestment 
reduces the profits when ρ  is sufficiently large to prevent the bank from failing, and when ρ is 

smaller and the bank fails, a smaller revenue from the remaining investment might correspond to 
larger deposit guarantee payments by the government at T=2. Hence, assuming that γ  is sufficiently 

small, it makes sense for the government to recapitalize the bank instead of letting the banker destroy 
a part or whole of the investment.  

When extra liquidity is needed, the value of L (defined by (8)) is negative, and  the necessary extra 

liquidity amounts up to L .  As our next step, we shall explain how the outside option of disinvesting 

determines the share 
G

s  of the bank that the government can demand for itself in exchange for 

providing L . In general, a disinvestment of size I∆  reduces the remaining investment to 0I I I= − ∆  

and produces ( )Iγ ∆  in liquid assets at T=0. Using the disinvestment strategy, the liquid assets that 

are available at T=1 consist of the liquid assets 0D I−  that remain after T=0 plus the liquid assets 

( )Iγ ∆  from the disinvestment. These assets equal the withdrawals only after the whole investment 

has been disinvested (i.e. when 0I I∆ =  and 0I = ) if χ  equals  

(11) ( ) 0
1

1

1
1 1

I
R

R D

µ
χ γ

+  
= − + −  

 

If χ χ≤ , the disinvestment strategy would lead to the elimination of the whole investment, and if 

χ χ< ,  it would cause bank failure already at T=1. Between the two extremes χ χ=  (for which no 

disinvestment is needed and the remaining investment is 0I I= ) and χ χ= , the investment that 

remains under the disinvestment strategy is a linear function of χ . Hence, we may express the 

investment that still remains at T=2 under the disinvestment strategy as  

(12) ( )
( ) ( ) 0

                                     

 /  ,     

0

  

,
DIS

I
I

χ χ

χ χ χ χ χ χ χ
χ

<
 − − ≤ ≤ 

=
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After disinvestment the assets of the bank would at T=2 amount up to ( )DIS
Iρ χ  and the liabilities 

would amount up to 2R  for each of the 
PAT

Dχ  remaining deposits. Remembering (4), it is seen that 

the final payoff from the bank would be  

(13) ( ) ( ){ }2max / 1 ,0
DIS DIS

I R Dπ ρ χ χ µ= − +   ( )χ χ≤  

and this final payoff would at the same time express the profit of the banker. 

The disinvestment strategy affects the equilibrium of the model, in which extra liquidity is provided 
by recapitalization, via the result (13). Under the recapitalization strategy, in which the government 

provides the missing liquidity and demands in exchange the ownership of the share 
G

s of bank, the 

final payoff from the bank is  

(14) ( ){ }0 2max / 1 ,0
BANK

I R Dπ ρ χ µ= − +    ( )χ χ≤  

The share 
G

s  of this payoff goes to the government and the share 1
G

s−  to the banker. Hence, in this 

case the banker’s profit is  

(15) ( )1
BANKER G BANK

sπ π= −     ( )χ χ≤  

while the final payoff  that the government receives from the bank is 

(16) 
GOV G BANK

sπ π=     ( )χ χ≤  

The banker will not accept recapitalization if the expected profit from it is smaller than the expected 
profit from disinvestment. Introducing the notation   

(17) ( ) ( ) ( )
0

E G G hηρ η
ρ ρ ρ

∞

= ∫   

for the expectation value of any function of ( )G ρ  of ρ , assuming that the signal is η  (where either 

Bη =  or Gη = ), we may formulate the condition which determines the government ownership 
G

s  

as 

(18) ( ) ( ) ( )1
G BANK DIS

s E E
ρ η ρ η

π π− =   ( )χ χ≤  

We conclude from (12) and (13) that the result (18) is formally valid also when χ χ<  (i.e., in which 

the disinvestment strategy leads to the elimination of the whole investment and bank failure already 
at T=1) since in this case disinvestment corresponds to zero profit, implying that the government can 

demand the whole bank for itself and that 1
G

s = .  Our analysis of the banker’s strategy is based on 

the result, which implied by (15) and (18), that 

(19) ( )1
BANKER G BANK DIS

E s E E
ρ η ρ η ρ η

π π π= − =  
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so that the banker’s expected-profit-maximizing choices are identical with the ones that correspond 
to the disinvestment strategy (despite of the fact that the recapitalization strategy is always chosen). 

 

 

2.3 The signal G and some simplifications 

  

We shall now consider the case in which the signal η  turns out to be G. According to (6), this 

implies that at T=2 the investment produces at least slightly more than the value of the invested assets. 
Our analysis of this case justifies a number of simplifications to our model.  

Although we have already explained why we may leave the banker’s choice between disinvestment 
and recapitalization out of the game that we consider (and assume that recapitalization is always 

chosen), bewilderingly many choices still seem to exist in the model. At T=0 the banker chooses 1R ; 

the depositors choose whether to deposit; if they do, the banker chooses the amount of deposits D and 

the size of the investment 0I ; after the signal η  the banker chooses the interest factor 2R ; the 

depositors choose whether to stay or withdraw; and at T=2, in case of bank failure, the government 
chooses whether to provide the promised deposit guarantee.  

However, our approach is to solve the equilibrium values 1R , D, 0I , 2R  and χ  assuming that the 

good signal Gη =   is observed, to assume that the choices 1R , D, and 0I  (which are made before 

observing the signal) correspond to the good signal, and to investigate the game that takes place after 
the signal when the signal is Bη = . When the case with the “good” signal is investigated, it is not 

necessary to consider the choice of the government at T=2, because this choice (i.e., whether to 
provide deposit guarantee payments) is made only in case of bank failure, and it turns out that after 

Gη =  the bank never fails in equilibrium. As we stated above, under its obvious interpretation our 

model describes a case in which the signal Bη =  is a shock which the actors have not considered 

while choosing their strategies at T=0, but the same equilibrium emerges also when the probability 
of the signal Bη =  is sufficiently small, given the information of period T=0. 

As our first step, we observe that a choice 2 1R R<  would lead to a full-scale bank run, since for a 

patient consumer the utility of withdrawing is always ( )1u R , but the utility from staying is maximally 

( )2u R . Accordingly, from now on we shall assume that 2 1R R≥ . Our analysis is complicated by the 

fact we have not yet stated what happens in case of bank failure (although we know from (6) that 

when Gη = , there are no bank failures when the values of 1R  and 2R  are not excessively large). 

However, we can already now present a somewhat technical result, which provides a maximum for 

the banker’s expected profit and which allows us to solve for 1R , D, 0I , and 2R  in the “good signal 

equilibrium”.  
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Remark 1.10 Assume that observed signal is Gη = , and consider the choices of 1 0 2, ,R I R  by the 

banker, viewing D as fixed.  

(a) If the interest factors chosen by the banker are 1 2,R R  (where 1 20 R R< ≤ ), the banker’s expected 

profit is not larger than ( )*
BANKERG

E
ρ

π  , where   

2* 1max 1 ,0
1 1BANKER

R R
D

µ
π ρ

µ µ

    
= − −   

+ +     

 

and ( ){ }2 2 1min , 1R R Rε= +  . The maximum value can only be achieved if the investment is 

* 1
0 1

1

R
I D

µ

µ

 
= − 

+ 
 

and all patient depositors choose to stay. 
 

(b) There are interest factor values 1 2,R R  with 2 1 1R R> >  which are such that, as long as 1 1R R≤  

and 2 2R R≤ , the bank never fails. If the banker chooses interest factors 1 2,R R  for which 1 2R R<

, 1 1R R≤  and 1 2 2R R R< ≤ , and the investment is *
0I , all patient depositors stay and the banker’s 

expected profit has the value ( )*
BANKERG

E
ρ

π  defined in part (a). 

 

Remark 1 leads to a simple characterization of the expected-profit-maximizing choices 1R  , 0I  and 

2R . The upper limit of expected profit, *
BANKERπ  is decreasing in 1R , and also in 2R  when 

( )2 11R Rε< + , and hence, it is an immediate consequence of Remark 1 that the optimal values of 1R  

and 2R  must satisfy 1 1R R<  and ( ){ }2 2 1, 1R R Rε< + .  

Assuming these conditions to be valid, we now consider the choice that the patient consumers make 

at T=1 after the signal Gη = . Clearly, the banker’s expected profit – which now equals ( )*
BANKERG

E
ρ

π  

– is increased by a decrease in 2R  if  2 1R R>  but – as we have seen – banker’s profit is always zero 

if 2 1R R< . It follows that the only Nash equilibrium is the limiting case in which 2 1R R=  , it is 

immaterial to the patient depositors whether to stay or withdraw (since they know that the bank never 

fails and their utility is in both cases ( )1u R ), and they all choose to stay so that 1χ =  . 

We now consider banker’s choice of 1R  at T=0. If 1 1R < , the consumers know that their expected 

utility from depositing must be ( )1u R , i.e. smaller than the consumers’ utility from storing wealth in 

the form of liquid assets. Hence, the banker cannot attract any depositors if he chooses 1 1R < , and 

                                                           
10  An appendix containing the proofs of the Remarks and Theorems is available upon request from Ilkka Kiema 
(ilkka.kiema@labour.fi)  
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we can now conclude that  1 1R ≥  in equilibrium. Further, since in equilibrium 2 1R R= , we observe 

that  

* 1 1max 1 ,0
1 1BANKER

R R
D

µ
π ρ

µ µ

    
= − −   

+ +    
 

Now the choice 1 1R >   cannot maximize expected profit, since ( )*
BANKERG

E
ρ

π  is decreasing in 1R , 

while the choice 1 1R <  yields zero profit. Hence, the only Nash equilibrium is the limiting case in 

which 1 1R = , it is immaterial for the consumers whether to deposit since it yields the same utility as 

holding liquid assets would yield, and the number D of consumers, as desired by the banker, choose 

to deposit. The maximum expected profit ( )*
BANKERG

E
ρ

π  that we just deduced increases linearly in D, 

implying that the expected-profit-maximizing value of D is its maximal value, i.e.  

 1D µ= +  

Finally, we may now conclude from Remark 1(b) that the optimal investment is  

1
0 1 1

1

R
I D

µ

µ

 
= − = 

+ 
 

Except for the result concerning the interest factor 2R , which is chosen only after the signal has been 

observed, these results remain valid also in the equilibrium in which the signal unexpectedly turns 
out to be Bη = . Remembering (3) and (4), the simplifications that apply also to this case can now be 

summarized as follows: 

(20) 

1

0

1

1

1

1

PAT

IMP

D

D

D

R

I

µ

µ

= +
 =

=
 =

 =

 

In particular, these conditions imply that the investment 0I  is identical with the number 
PAT

D , further 

implying that the bank has never extra liquidity after the period T=1. In other words, the value of L 
defined by (8) (which expresses the difference between the liquidity that the bank needs at T=1 and 
its actual liquidity) is never positive. Indeed, L is now given by  

(21) 1L χ= −  

We saw above that the case with extra liquidity corresponds to χ  values with χ χ> , and we can 

now conclude also from (9) and (11) that  
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(22) 
1

1

χ γ

χ

= −


=
 

which also shows that the case with extra liquidity is impossible. 

Finally, remembering (19) and (13), we observe that that the expected profit of the banker can (in 
general, and not just after the “good” signal) be now expressed as 

(23) ( ){ }2max ,0
BANKER DIS DIS

E E E I R
ρ η ρ η ρ η

π π ρ χ χ= = −  

where according to (12), (20), and (22)  

 (24) ( ) ( ){ }max 0 1 /,  
DIS

I χ γ γχ + −=  

Armed with these simplifications, we now move to the discussion of the case in which the signal 
turns out to “bad”, i.e. Bη = . There are three choices that remain to be considered in this case: the 

choice of 2R  at T=1 by the banker; the choice whether to withdraw or to stay, made at T=1 by the 

depositors; and the choice whether to provide the promised deposit guarantee, made at T=2 by the 
government.  To proceed, we must now discuss bank failure and the government’s choice in more 
detail.  

 

 

2.4 The deposit guarantee and the welfare function 

 

By assumption, the welfare function which the government wishes to maximize is 

(25) ( ) ˆ1BANKER GOVW U Fξπ π χ χτ= + + − − − −ɶ  

where the first term 

(26) ( ) ( )1
S

U D u uχ χ= − +ɶ  

is the aggregate utility of the depositors, 
S

u  being the utility of each staying depositor. (The 

withdrawing D χ− depositors include, of course, both the impatient depositors and the withdrawing 

patient depositors.) The next two terms correspond to the payoff that bank ownership yields to the 
banker and to the government. The constant multiplier ξ  satisfies 1ξ < , which means, intuitively, 

that the government sees less welfare value in the assets obtained by the banker than in the assets it 
gets for itself.  

The fourth term represents the costs of recapitalization. We saw in Section 2.2 that the needed 

recapitalization is always L  which according to (21) equals  
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1L L χ= − = −  

To explain the remaining two terms, it is necessary to discuss deposit guarantee in more detail. In 

case of bank failure the assets of the bank – which amount up to 0Iρ ρ= , since the bank cannot have 

any excessive liquid funds at T=1 in equilibrium - are divided equally between the χ  staying 

depositors. By assumption, the government makes an additional transfer 0τ ≥  to each staying 
depositor in case of bank failure.  The choice of the government in the game that we consider consists 
in choosing the value of τ . This implies that the utility of each staying depositor is  

(27)  ( )/
S

u u ρ χ τ= +  

We model the deposit guarantee as the promise that the payments to each staying depositor, 

/ρ χ τ+  

will altogether amount up to at least 1. In other words, the government promises that transfer τ

amounts up to at least  

(28) { }max 0,1 /
DEP

τ ρ χ= −  

The quantity F̂  is the counterpart of reliability of the government’s promise. Being sovereign, the 
government can also choose not to honor its promise, but this choice causes a fixed welfare cost 

0F > . The welfare cost represents e.g. indirect reputational costs from distrust in government 
institutions, and because of it the welfare-maximizing government can fail to provide the promised 

withdrawn deposits only when providing them is sufficiently costly. Formally, we define F̂  by 

(29) 
,         

0,          
ˆ DEP

DEP

F
F

τ τ

τ τ

<
=

≥





 

We are now in the position to motivate the assumption (2), i.e. ( )0 1u′ < . We conclude from (26) 

and (25) that this assumption restricts the weight that consumers’ utility has in the government’s 
welfare function. In general, a welfare-maximizing government might wish to make social transfers 
to the depositors of a failed bank even in the absence of any deposit guarantee (simply in order to 
increase their utility). However, wishing to focus only on government spending which is motivated 
by the guarantee, we shall exclude the possibility of such transfers from our model. To exclude it, we 
conclude from (1) that the maximal aggregate utility that a small transfer c∆  to m bank depositors 

could yield is ( ) ( )0m c u′∆ , while the welfare cost of those transfers is ( )m c∆ . Hence, the postulate 

that such transfers are never socially optimal may be formulated as the condition (2), i.e. ( )0 1u′ < . 
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3 Solving the model 

 

We are now ready to solve the restricted model which describes the events after the “bad” signal 

Bη = . Solving it consists of finding the 3-tuples ( )2 , ,R χ τ  which correspond to its Nash equilibria. 

Proceeding by backward induction, we begin by solving the choice of the deposit guarantee payment

τ by the government, when the values of 2R (which is chosen by the banker) and the value of χ  

(which emerges from the choices of the patient depositors)  have been given. 

 

 

3.1 Choice of the government at T=2 

 

The following remark, which is a straightforward consequence of (2) and (25), states that the 
government never makes to the depositors payments which would exceed the payments motivated by 

deposit guarantee; i.e., it makes either the just the promised payment 
DEP

τ  or no payment at all. 

 

Remark 2. The transfer τ  that a welfare-maximizing government chooses is always either *
DEPτ τ=  

(i.e. the minimal transfer which is compatible with the promised guarantee) or * 0τ = . 

 

Obviously, the choice * 0τ =  corresponds to deposit guarantee failure whenever 0
DEP

τ > . On the 

other hand, when the bank does not fail, and also when the assets ρ  of the failed bank suffice for 

covering the principal of the remaining χ  deposits (i.e. when χ ρ≤ ) , (28) implies that 0
DEP

τ = . In 

this case Remark 2 simply states that the government does not make any extra transfers to the 
remaining depositors of the bank. The following theorem states that deposit guarantee failures can 
only occur when the revenue from the bank’s investment is sufficiently small.   

 

Theorem 1. If the government lets the deposit guarantee fail for some values of the bank’s revenue 

ρ , there is a threshold value *
GUARρ  of the revenue ρ  which is such that the government lets the 

deposit guarantee fail when *
GUARρ ρ<  but not otherwise. The value *

GUARρ  is determined by  

( ) ( )
*

*1 GUAR

GUAR
u u F

ρ
χ χ ρ χ

χ

 
− − = − 
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We can conclude from Theorem 1 that 

(30) *
GUARρ χ≤  

as it, of course, should be the case (since, as we just noted, the deposit guarantee is not needed when 
ρ χ≥ ). 

For the ease of notation, we now define * 0GUARρ =  if  it is not welfare-maximizing to let the deposit 

guarantee fail for any value of the revenue ρ . Given this convention, Theorem 1 implies that the set 

of revenue values ρ  for which the government lets the deposit guarantee fail is always the (possibly 

empty) interval  )*0,
GUAR

ρ . We shall still present an essential result which is concerned with the 

comparative statics of *
GUARρ .  

 

Remark 3. The threshold value *
GUARρ  increases with the number χ  of the staying depositors. More 

rigorously, the deposit guarantee cannot fail if χ  is sufficiently small, and *
GUARρ  is strictly increasing 

in χ  whenever χ  is such that the deposit guarantee can fail.  

 

Summing up, in our model the government makes only transfers which are made necessary by the 
deposit guarantee. Further, the values of the revenue ρ  for which the deposit guarantee fails (if any) 

are below the threshold value *
GUARρ , and the range of such values (if any) gets larger as the number 

of the staying depositors increases. This is, of course, because of the raising costs that payments to a 
larger number of depositors cause for the government. 

 

 

3.2 The choice between staying and withdrawing by the patient depositors  

 

Having found the equilibrium choice by the government at T=2, we now turn to the choice that the 
patient depositors make at T=1 between staying and withdrawing. While withdrawing always 

produces the utility ( )1u , the utility from staying depends on both the interest factor 2R  and the signal 

η  which determines the probability distribution of the revenue of the bank’s investment, ( )hη ρ  . We 

shall denote the expected utility from staying (given Bη =  and 2R ) by 
SB

E u
ρ  .  

Assuming that the bad signal Bη =  has been observed, there are four cases to consider when 

evaluating 
S

u . Firstly, the bank does not fail if the revenue from the investment, ρ  are equal with or 

larger than its liabilities 2Rχ . In this case each depositor receives the sum 2R . Secondly, if 
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2Rχ ρ χ< < , the bank’s assets suffice for paying the guaranteed sum (i.e. 1) to each staying depositor 

despite of bank failure. In this case the assets of the bank are divided evenly between the staying 

depositors, so that each of them receives the sum of /ρ χ . Thirdly, if *
GUARρ ρ χ≤ < , the payments 

to each staying depositor amount up to the minimum which is compatible with the guarantee, i.e. 1. 

Finally, if *
GUARρ ρ< , the government fails to honor its promise and each staying depositor receives 

only the sum /ρ χ  which they would receive in the absence of the deposit guarantee. Summing up,  

(31)  

( ) ( ) ( )

( ) ( ) ( )

*

*0

2

1
GUAR

GUAR

BANK

BANK

S B BB

B B

E u u h d u h d

u h d u R h d

ρ χ

ρ ρ

ρ

χ ρ

ρ
ρ ρ ρ ρ

χ

ρ
ρ ρ ρ ρ

χ

∞

 
= + 

 

 
+ + 

 

∫ ∫

∫ ∫
 

We are now in the position to explain why bank runs always remain partial in our model. To see 
why this is the case, we observe that a partial bank run makes the liabilities of the bank decrease, but 
due to recapitalization, there is no corresponding decrease in the revenue from the bank’s investment. 
Hence, (as also Remark 3 implies) the bank failure probability must decrease as the number of staying 
depositors decreases, and a bank run stops when the expected utility from staying has become 
identical with the utility from withdrawing, i.e. when  

(32)  ( )1
SB

E u u
ρ

=  

 

Theorem 2. The bank run is partial for any interest factor 2 1R > .  In other words, when 2 1R > , the 

equilibrium number *χ  of the staying depositors satisfies * 0χ > .  

 

The monotonous decrease of bank failure probability implies that the number of the staying depositors 
has a unique equilibrium value. This result is due to recapitalization, and must remain valid even in 
the absence of the deposit guarantee.11 When extra capital is available, the decision of some patient 
consumers to withdraw is not a reason for the other patient consumers to follow suit; rather, it might 
be a reason to stay because it reduces the remaining liabilities of the bank.  

 

Theorem 3. Assume that the banker’s interest factor choice 2 1R >  is fixed. The subgame which 

consists of the number staying depositors χ  and the government’s choice of τ  has a unique 

                                                           

11 More rigorously, the situation in which there is no deposit guarantee may be represented by putting 0F =  and 
*
GUARρ χ= . The result (31) implies, also when these choices are made, that the attractiveness of staying decreases with 

χ . 
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equilibrium. In particular, the number *χ  of the staying depositors is uniquely determined in 

equilibrium. 

 

To add further intuition to Theorem 3, one should note that when the government decides whether to 
make deposit guarantee payments, the costs of recapitalization are already sunk costs. However, the 
earlier bank run reduces the costs that are caused by the guarantee for the remaining deposits. Hence, 
the bank run serves as commitment device, as it increases the government’s incentives to keep its 
promise and the remaining depositors’ expected utility from staying, and this makes the bank run stop 
at a uniquely determined point. Also the following plausible result is valid. 

 

Remark 4. In a partial bank run equilibrium the equilibrium number of staying depositors increases 

with the bank’s interest factor 2R . In other words, *
2/ 0d dRχ >  when the bank run is partial. 

 

 

3.3 The choice by the banker 

 

The first move of the three-move game after the “bad” signal is made by the bank, and it consists 

of choosing 2R . The banker aims at maximizing his expected profit while choosing it, and the 

expected profit is according to (23) and (24) given by  

2

1
max ,0

BANKER
E E Rρ η ρ η

χ γ
π ρ χ

γ

  + −
= −  

  
 

Defining 
BANKER

ρ  as the threshold value which satisfies 

(33) 2

1BANKER

Rγ χ
ρ

χ γ
=

+ −
ρ   

we may express the banker’s profit also in the form  

(34) ( )2

1
BANKER

BANKER B
E R h dρ η ρ

χ γ
π ρ χ ρ ρ

γ

∞   + −
= −  

  
∫  

Theorem 3 implies that when the interest factor value 2R  has been fixed, there is a unique value of 

the bank stability χ  which corresponds to an equilibrium. Finding the expected-profit-maximizing 

value of χ  is a difficult task despite of this uniqueness result. In general, there are three kinds of 

cases to consider.  
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Firstly, we remember that according to Remark 3, the deposit guarantee never fails when the number 

of staying depositors is sufficiently small. We let 
M

χ  represent the threshold value which separates 

the χ  values for which the deposit guarantee can and cannot fail. It must be the case that * 0GUARρ =  

when 
M

χ χ= , and we can infer from Theorem 1 that 
M

χ is also characterized by  

(35) ( )( )1 1
M

u Fχ − =  

We now observe that as 2R  approaches the minimum 2 1R =  from above, the number of staying 

depositors must according to (31) and (32) approach 
M

χ . (Intuitively, the interest 2 1R −  is a 

compensation for the loss that the depositor suffers when the deposit guarantee fails, and in 
equilibrium this compensation approaches zero when the risk of deposit guarantee failure approaches 
zero.) The profit which corresponds to this limiting case is  

1
max ,0M

BANKER M
E Eρ η ρ η

χ γ
π ρ χ

γ

  + −
= −  

  
 

In this case the banker takes no action to stop the bank run which is caused by the bad signal and 
relies completely on the government’s promise as a tool for stopping it.  

Secondly, considering larger values of 2R , the maximization problem might have an internal 

solution for which the derivative of (34) is zero, i.e. for which  

(36) ( )2
2 2

0BANKER

B

dE d
R h d

dR dR

ρ

ρ

π ρ χ
χ ρ ρ

γ

∞   
= − + − =  

  
∫   

Thirdly, there is another corner solution to be considered: it might be possible and optimal for the 

banker to increase the interest factor 2R  until there is no bank run, i.e. until 1χ = . We denote the 

smallest value of the interest factor (if any) which suffices for this purpose by 2,MR . 

 

 

4. The welfare effects of a change in deposit guarantee reliability 

 

In our model the reliability of the deposit guarantee is represented by the cost F. As F represents 
the inability of the government to make binding commitments, the search for the optimal (welfare-
maximizing) value of F does not seem very meaningful; after all, F cannot, by definition, be freely 
adjusted by the government. Nevertheless, we shall address the question how expected welfare 
(relative to the probability distribution of ρ , given the signal Bη = )  would be affected by changes 

in F.  
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Considering the expectation value of our welfare function (25), it is easy so see that the expected 

consumer utility Uɶ  is a constant, since in equilibrium the utility of each consumer is according to 

(32)  always ( )1u . This is because the risks that bank failure or deposit guarantee failure might cause 

to the depositors are always compensated by interest payments in equilibrium. Hence, we may write 
expected welfare as 

(37) ( ) ( ) ( ) ( ) ( )2
ˆ, 1 1

BANKER GOVB B B
E W R u E E F

ρ ρ ρ
χ ξπ π χ χτ= + + − − − +  

Since we measure the reliability of the deposit guarantee by F, i.e. by the cost of breaking it, an 
improvement in its reliability has a direct negative welfare effect when the guarantee breaks down 

and which in accordance with (29) shows up as an increased value of  F̂ . This negative welfare effect 
has no counterpart in the traditional bank run models in which the guarantee is always perfectly 
reliable and often a promise that one never needs to keep.   

The rest of the terms depend on (37) the reliability parameter F indirectly, because of its influence 
on bank stability, as measured by χ .  In addition, the final payoff from the bank – which is divided 

into the banker’s profit 
BANKER

π and government’s final payoff 
GOV

π  – depends also on the interest 

factor 2R  that the banker chooses, which is affected by F.  

In a discussion of the aggregate effect on expected welfare there are three cases to consider. 
Beginning with the easiest case, we consider the situation in which the banker eliminates the bank 

run altogether by choosing the smallest interest factor 2 2,MR R=  which suffices for preventing it. In 

this case there is no recapitalization, the banker’s profit is identical with the final payoff from the 
bank, and 1χ =  so that (37) becomes  

( ) ( ) ( ) ( )2,
ˆ, 1

N BANKERB B B
E W R u E E F

ρ ρ ρ
χ ξπ τ= + − +  

In the no-bank-run equilibrium the increased deposit guarantee reliability will, according to Theorem 

1, decrease *
GUARρ , and in accordance with  (32) and (31) this effect must be compensated by a 

decrease in the interest factor 2,MR . Intuitively, as the government takes care of improving the 

stability of the banking system, the bank can make its depositors stay also with a lowered interest 
factor. Now the positive welfare effect of the improved guarantee consists solely in increased profits 
of the banker. 

In the other corner solution 2 1R = , and the bank run stops only when there are so few staying 

depositors that the government guarantee never fails. In this limiting case the number of the staying 

consumers has  the value 
M

χ  which is determined by (35). Now an improvement in the reliability of 

the guarantee leads to greater bank stability (i.e, greater 
Mχ ) and greater profits for the banker. It also 

decreases the amount of new capital which is needed at T=1 (i.e, 1
M

χ− ) and, accordingly, the part 

of the bank’s profit that the banker is obliged to give to the government at T=2. Assuming that 
recapitalization is on the whole costly to the government, the combined welfare effect of the last two 
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changes is positive. Again, the positive effects must be weighted against the increased welfare cost F 
that emerges in case of actual deposit guarantee failure.  

The above analysis becomes much more complicated when one considers the internal solution in 

which (36) is valid. It is clear that in the internal solution the interest factor 2R  and stability χ  are 

between the values that they have in the two corner solutions, i.e. that in the internal solution 

2 2,1 MR R< <  and 1
M

χ χ< < . While it is also obvious that – keeping the interest factor 2R  fixed – 

an increase in the reliability of the deposit guarantee improves bank stability χ , it is not obvious how 

the derivative  2/d dRχ , which according to (36) affects the expected-profit-maximizing choice of 

2R  by the banker, changes as a result of a change in χ . It is even conceivable that a small 

improvement in the deposit guarantee reliability might motivate the banker to lower the deposit 
interest factor to an extent which would increase the size of the bank run χ . If one wanted to exclude 

this implausible case, one would have to introduce more specific assumptions concerning the 

probability distribution ( )B
h ρ  of the return from the bank’s investment, which connects 2R and χ  

in equilibrium in accordance with (31).  

We may, however, observe that the three equilibria approach each other when F approaches the 
value for which the deposit guarantee never fails (not even when 1χ =  and all depositors stay). We 

conclude from (35) that this will be the case when F is at least  

( )1 1
N

F u= −  

Considering the limit in which F approaches 
N

F , we observe that in the no-bank-run equilibrium 

(in which 1χ = ) the deposit interest factor 2,MR  approaches 1 from above, and in the maximal-bank-

run equilibrium (in which 2 1R = ) the bank stability
M

χ  approaches 1 from below. In the limit in 

which 
N

F F=  one reaches the trivial equilibrium which occurs also after the good signal Gη = , and 

in which there is no bank run although the interest factor is 1 and the depositors do not get interest 
for their deposits. 

 

   

5. The effects of EDIS on bank stability  

 

We now apply the insights from our new framework to EDIS. The natural field of application of 
our framework is a crisis which is sufficiently large to make the assets of deposit insurance funds 
insufficient, implying that reimbursing deposits may involve a political decision to provide additional 
funding for the reimbursement. In the case of a national deposit insurance scheme, the decision would 
normally be made by the government, while in the case of EDIS the counterparts of the “government” 
of our model would be the Single Resolution Fund and – should the single Resolution Fund be unable 
to fulfill its task –  its backstop. The decision to make use of the backstop would be a political decision 



23 

 

  

and quite analogous with the decision that the government makes at T=2 in our model. More 
specifically, in the Commission proposal the backstop would only be deployed if the decision to 
deploy it was backed by 85 % of the votes of the member countries (European Commission 2017b, 
p. 6).  

Our model allows us to give precise formulations to two opposite effects of a shared deposit 
insurance scheme. Firstly, consider a crisis which is restricted in size, such as a financial crisis in a 
single eurozone country, or the crisis of a single large bank. Our framework leads to the conclusion 
that in the case of a restricted crisis, the shared deposit insurance scheme tends to improve the stability 
of the banking sector (measured by the size of bank runs). This conclusion is normally supported by 
referring to the better diversification that a larger insurance company or fund provides. However, in 
our model the shared scheme is a “diversification device” in a more abstract sense.  

As already discussed earlier, the government’s costs from a deposit guarantee breakdown are in our 
model indirect (as they consist of reputational costs and e.g. reduced trust in government institutions) 
but the costs from reimbursing depositors of a failed bank are direct. The indirect costs grow when 
the deposit guarantee area grows, which can be represented as growth of the guarantee failure cost F 
in our framework, while the direct costs are not affected by the size of the deposit guarantee area. In 
other words, in case of a regional bank crisis we may argue that the costs from a deposit guarantee 
breakdown are increased by the shared deposit insurance scheme (since the “reputational” cost is now 
faced by the whole EU Banking Union) without a corresponding increase in costs from reimbursing 
deposits. In our model this should make a deposit guarantee breakdown less likely and reduce or 
altogether eliminate partial bank runs. (In reality it might, of course, also happen that the national 
deposit insurance fund is insufficient for the needed reimbursements, while a shared deposit insurance 
fund suffices for them, in which case a shift to EDIS would altogether eliminate the government 
decision which occurs in our model.) 

On the other hand, the stability effects of introducing EDIS might be ambiguous in a systemic crisis 
which affects the whole Banking Union and leads to the use of the backstop of the Single Resolution 
Fund. In our model there is just a single bank, and a natural way to apply it to a crisis of the whole 
deposit guarantee area would be to think of the bank as a representative “average” bank and of the 
cost F as the reputational cost of deposit guarantee failure, divided by the number of banks in which 
such failures occur. Under this interpretation a change of scale would not by itself cause any changes 
in the above analysis, if the aggregate reputational cost F grew in proportion to the size of the deposit 
guarantee area. In other words, one would arrive at the conclusion that the changing size of the deposit 
guarantee area (e.g. shifting from a national deposit insurance scheme to EDIS) is irrelevant, when a 
severe, systemic crisis hits the whole area equally. 

However, the “reputational cost” F represents also the depositors’ trust in the deposit insurance 
scheme, and such trust – as the example of the Greek “bank jog” in 2009-2012 shows - is not identical 
in all the countries of the eurozone. If the reputational cost and the corresponding depositor trust 
reflected under EDIS some weighted average of member countries’ national levels of trust before the 
introduction of the joint scheme, we could conclude that EDIS tends to decrease the danger of partial 
bank runs in the countries in which there is less trust in the national deposit insurance than in the 
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eurozone on the average. However, the opposite might be the case in the countries in which national 
institutions are trusted more highly.  

In addition, it might be excessively optimistic to view the trust that depositors feel for EDIS as an 
average.  After all, trust depends also on the ability of our model’s “government” (which is in the 
literal sense a government in the national deposit insurance schemes, and the backstop and other EU 
institutions in EDIS) to make fast decisions. Such decisions might be more difficult for EU 
institutions than for national institutions in a systemic crisis e.g. because of the required 85 % 
majority. One policy implication hence is that in order for the EDIS to achieve its full potential 
stability benefits, the backstop should be designed to be as credible as possible.  

 

 

 

6. Concluding Remarks 

 

We have considered bank runs which are caused by the suspicion that, in spite of its promises, a 
government might not protect deposits during a severe future crisis. In this setting bank runs are quite 
different from those in more traditional models, in which they occur in the absence of a deposit 
guarantee and are caused by the fear that a shortage of liquidity might lead to an immediate bank 
failure. In the absence of a deposit guarantee traditional models of bank runs (e.g. Diamond and 
Dybvig, 1983) have two equilibria: the one in which no one has an incentive to withdraw his deposits 
(except for immediate consumption needs) because other depositors do not withdraw theirs, and the 
other in which all depositors withdraw simultaneously. In contrast, we have assumed that the 
government always bails out banks by providing recapitalization if banks have a liquidity shortage in 
the absence of a crisis. Nonetheless, as the government may break its deposit guarantee in a severe 
crisis, bank runs may still occur. 

Our model provides a simple explanation for why in the presence of a government deposit guarantee 
bank runs are gradual and partial as has been recently often observed; e.g., in the euro area. As 
deposits are withdrawn during a bank run, the government’s future liability of guaranteeing the 
remaining deposits is gradually reduced. This increases the government’s incentive to honor its 
promise because the cost of breaking its guarantee (which might be caused by e.g. reputational 
concerns) does not diminish like the remaining payments. This in turn decreases the remaining 
depositors’ incentive to withdraw. Eventually, there is a unique point when the bank run stops. This 
point (i.e., amount of remaining deposits) depends on the common signal that the depositors receive 
concerning the future state of the economy, and the government’s reputational costs. As an 
application of our model, we contrasted EDIS with national deposit guarantee schemes and concluded 
that while EDIS probably tends to improve bank stability (measured by the size of bank runs) in bank 
crises of a restricted size, the opposite could also be the case in a systemic crisis which affects the 
whole eurozone. The effects of introducing EDIS might also differ in different countries, depending 
on whether the citizens have more trust in national than union-level institutions or vice versa.  
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From the point of view of economic theory, it is worth emphasizing that this mechanism turns the 
equilibrium of our model unique, although we do not make use of the mathematically essentially 
more complicated global games framework (cf. Goldstein and Pauzner, 2005). Our analysis could be 
extended in a variety of directions, one of which is the following. In our model the government 
reduces the future cost of its own deposit guarantee liability when it provides liquidity to a bank so 
that the bank can weather a partial run on deposits. In this way, liquidity provision, or recapitalization, 
serves as a commitment device, which makes a deposit guarantee breakdown less likely. This works 
out because we have assumed that the cost of the government’s liquidity provision before a crisis is 
a sunk cost.  A possible extension to our analysis would be to assume that liquidity provision is not a 
sunk cost completely, but increases sovereign debt and contributes to the government’s financial 
distress when the deposit guarantee is in danger of breaking down. This would most likely reduce 
bank stability in the setting of our model. 
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 Figure 1. Time line of the model. The values in parantheses correspond to the trivial equilibrium with the 

“good” signal Gη = .  The choices which are made before observing the signal are identical in case of the 

“bad” signal Bη = .  The choices within the restricted game after the signal (which may differ for the two 

signals) are indicated in bold.  
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